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The Sensor

•  The common plate of a differential capacitor and torsion-bar
suspension

        system is defined by a 25 µm trench Bosch® etched into a 100 µm
Si(001)

        wafer

•  The ~5 µm capacitor gap is etched into a Pyrex® wafer and the
Au/Cr

         electrodes are deposited in the gap

These two are then anodically bonded to form the sensor
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Separating Mechanical & Adhesive Friction
•  Both tip and  substrate functionalized with -CH3 or -COOH end
groups

        on SAM films of various lengths

•  Data taken of both Fn vs. d and Fµ vs. Fn

•  Results fit with simple contact-mechanics model (JKR) to obtain

         quantitative values of mechanical and adhesive components of
µ
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Notes

2xCOOH(10) 6.5 2.2 4.3 Two short films
Strong inter-film bonds

2xCOOH(15) 3.2 0.8 2.4 Two long films
Double intra-film bonds

CH3(15)/COOH(15) 1.6 0.8 0.8 Two long films
Single intra-film bonds

CH3(15)/COOH(10) 1.5 1.1 0.4 One short one long film
No Chemical bonds

2xCH3(15) 0.8 0.8 0.0 Two long films
No chemical bonds

Conclusions
•  While only as accurate as the
contact-mechanics model, these are the
first quantitative measurements of the
mechanical vs. adhesive origins of
molecular-level friction and
demonstrate:

•  Friction from the adhesive
interaction    results from breaking
bonds under lateral tip motion for both
inter and intra-film bonds

•  Only the even -COOH combination
shows inter-film bonding

•  The odd length -COOH terminated
SAM is virtually hydrophobic

•  The strength of inter- is greater
than that for the intra-film bonding

•  Because of the strain effect, the
“modulus”  value varies inversely as
length
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J. E. Houston
Sandia National Laboratories



Glass Substrate

Probe Tip

Anodic Bond Torsion
   Bars

Teeter Totter

C
1

C 2

Laser
Diode
  #1

Laser
Diode
  #2

  Diode
Detector
    #1

  Diode
Detector
    #2

Optical Fibers

Metal
Capacitor
Pads

y

z

 Beam Splitter  Beam Splitter

Collimating 
   Lenses

Interference
     Cavity

IFM Instrument
Development

IFM Instrument
Development

Goal
  Develop a fully independent, 2D IFM
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•  Copyright software under LabView environment (W. L. Smith-
Sandia)

•  2D sensor in advanced prototype stage (Patent Pending)

•  Hardware available from local vendors

•  Currently 14 instruments in use; 6 at Sandia and 8 at various
universities
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